Bootstrap and empirical likelihood methods in extremes
نویسندگان
چکیده
One of the major interests in extreme-value statistics is to infer the tail properties of the distribution functions in the domain of attraction of an extreme-value distribution and to predict rare events. In recent years, much effort in developing new methodologies has been made by many researchers in this area so as to diminish the impact of the bias in the estimation and achieve some asymptotic optimality in inference problems such as estimating the optimal sample fractions and constructing confidence intervals of various quantities. In particular, bootstrap and empirical likelihood methods, which have been widely used in many areas of statistics, have drawn attention. This paper reviews some novel applications of the bootstrap and the empirical likelihood techniques in extreme-value statistics.
منابع مشابه
Empirical Likelihood Approach and its Application on Survival Analysis
A number of nonparametric methods exist when studying the population and its parameters in the situation when the distribution is unknown. Some of them such as "resampling bootstrap method" are based on resampling from an initial sample. In this article empirical likelihood approach is introduced as a nonparametric method for more efficient use of auxiliary information to construct...
متن کاملSmoothed jackknife empirical likelihood method for tail copulas
In this paper we propose a smoothed jackknife empirical likelihood method to construct confidence intervals for tail copulas or tail dependence functions for bivariate extremes. By applying the standard empirical likelihood method for a mean to the smoothed jackknife sample, the empirical likelihood ratio statistic can be calculated by simply solving a single equation. Therefore, this procedure...
متن کاملJackknife Empirical Likelihood Inference For The Pietra Ratio
Pietra ratio (Pietra index), also known as Robin Hood index, Schutz coefficient (RicciSchutz index) or half the relative mean deviation, is a good measure of statistical heterogeneity in the context of positive-valued data sets. In this thesis, two novel methods namely “adjusted jackknife empirical likelihood” and “extended jackknife empirical likelihood” are developed from the jackknife empiri...
متن کاملPoisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods
This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predict...
متن کاملEstimation of confidence intervals for the mean of heavy tailed loss distributions: a comparative study using a simulation method
This paper uses nonparametric methods to estimate the confidence intervals for the mean of asymmetric heavy tailed loss distributions. The nonparametric methods employed are the m out of n bootstrap, subsampling bootstrap, refined bootstrap, empirical likelihood ratio method, and bootstrap calibrated empirical likelihood methods. We evaluate the accuracy and compare the performance of the confi...
متن کامل